- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Qiang (4)
-
Ghosal, Sayan (4)
-
Pergola, Giulio (4)
-
Ulrich, William (4)
-
Venkataraman, Archana (4)
-
Goldman, Aaron L. (3)
-
Weinberger, Daniel R. (3)
-
Berman, Karen F. (2)
-
Bertolino, Alessandro (2)
-
Blasi, Giuseppe (2)
-
Fazio, Leonardo (2)
-
Mattay, Venkata S. (2)
-
Rampino, Antonio (2)
-
Goldman, Aaron L (1)
-
Weinberger, Daniel R (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
Išgum, Ivana (1)
-
Landman, Bennett A. (1)
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose a novel end-to-end framework for whole-brain and whole-genome imaging-genetics. Our genetics network uses hierarchical graph convolution and pooling operations to embed subject-level data onto a low-dimensional latent space. The hierarchical network implicitly tracks the convergence of genetic risk across well-established biological pathways, while an attention mechanism automatically identifies the salient edges of this network at the subject level. In parallel, our imaging network projects multimodal data onto a set of latent embeddings. For interpretability, we implement a Bayesian feature selection strategy to extract the discriminative imaging biomarkers; these feature weights are optimized alongside the other model parameters. We couple the imaging and genetic embeddings with a predictor network, to ensure that the learned representations are linked to phenotype. We evaluate our framework on a schizophrenia dataset that includes two functional MRI paradigms and gene scores derived from Single Nucleotide Polymorphism data. Using repeated 10-fold cross-validation, we show that our imaging-genetics fusion achieves the better classification performance than state-of-the-art baselines. In an exploratory analysis, we further show that the biomarkers identified by our model are reproducible and closely associated with deficits in schizophrenia.more » « less
-
Ghosal, Sayan; Chen, Qiang; Pergola, Giulio; Goldman, Aaron L.; Ulrich, William; Weinberger, Daniel R.; Venkataraman, Archana (, International Conference on Learning Representations)
-
Ghosal, Sayan; Chen, Qiang; Pergola, Giulio; Goldman, Aaron L.; Ulrich, William; Berman, Karen F.; Blasi, Giuseppe; Fazio, Leonardo; Rampino, Antonio; Bertolino, Alessandro; et al (, NeuroImage)null (Ed.)
-
Ghosal, Sayan; Chen, Qiang; Pergola, Giulio; Goldman, Aaron L.; Ulrich, William; Berman, Karen F.; Blasi, Giuseppe; Fazio, Leonardo; Rampino, Antonio; Bertolino, Alessandro; et al (, SPIE Medical Imaging)Landman, Bennett A.; Išgum, Ivana (Ed.)
An official website of the United States government

Full Text Available